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The use of interparticle coordinates in atomic and molecular calculations is reviewed and
emphasized. For states where the wave function is dependent only upon interparticle coordi-
nates the Hamiltonian is a relatively simple expression. If the wave function is a linear com-
bination of products of functions of single interparticle coordinates of the exponential power
form the formulas for local energy are particularly simple.

Es wird iiber Teilchenabstinde als Koordinaten in Atom- und Molekiilproblemen referiert
und auf jhren Wert hingewiesen. In Fillen, wo die Wellenfunktion nur von Teilchenabsténden
abhingt, wird der Hamilton-Operator verhiltnism#Big einfach. Ist die Wellenfunktion eine
Linearkombination von Produkten von Potenz-Exponential-Funktionen einzelner Teilchen-
absténde, so werden die Ausdriicke fiir die lokale Energie besonders einfach.

L’auteur fait une revue et souligne 'importance de Pemploi des distances relatives des
farticules comme coordonnées pour les calculs atomiques et moléculaires. Pour des états dont
les fonctions d’onde ne dépendent que de ces distances le ’'Hamiltonien devient relative-
ment simple. Si la fonction d’onde s’écrit comme une combinaison linéaire de produits de
fonetions exponentielles (& puissances) ne dépendant que d’une seule coordonnée interparticu-
laire, les formules pour I’énergie locale se simplifient particuliérement.

Introduction

Interparticle coordinates are the magnitudes of the distances between each
pair of particles in an atomic or molecular system. These include internuclear
distances, electron-nuclear distances, and interelectronic distances. Such coordi-
nates are natural and are attractive from a physical standpoint for a system of
several particles. For two-electron systems they have been involved in the most
accurate calculations such as those recently published by Koros and RooTmaaN
[7a, b] for H, and PeKERIs [11] for He.

To be sure, linear combinations of interparticle coordinates, elliptical and
perimetric coordinates, respectively, were actually used in these calculations. The
advantage of such combinations is to eliminate the dependence between the ranges
of the interparticle coordinates. However, for more complex systems such as the
Li atom or a triatomic molecule no similar combinations seem to be known.

Interparticle coordinates have been used directly in energy calculations for
systems of three particles with coulomb interaction and all in relative motion [§, 3].

Interelectronic distances have long been discussed as an aid to introduce
electron correlation in wave functions. The use of a correlation factor as in the
method of correlated orbitals shows great promise [7a, 6, 4, 2, 9]. Interelectronic
distances in the wave function cause grave difficulties in evaluating the integrals
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needed in the variation method but progress is currently being made in such
integrations [13, 10].

Although functions of interparticle coordinates are difficult to integrate it is a
simple matter to evaluate the local energy Hy/ly and to test the accuracy of the
wave function [1] or to use this device as a means of improving the function [5].

It is the purpose of this paper to discuss the Hamiltonian operator in inter-
particle coordinates and to display the simplicity and generality of formulas for
Hy and Hyfy for a particular form of .

Coordinates

Consider a system of # particles which may include electrons or nuclei or other
charged particles such as positrons or mesons which may enter into atom or mole-
cule formation. The total number of interparticle coordinates is equal to the
number of pairs of particles # (n—1)/2. The coordinates will be designated r;j,
usually with i <Cj. Occasionally to gain simplicity of formulas s may be greater than
7 but it is only necessary to remember that ry; = ry; and either form may be used.

For more than four particles the number of interparticle coordihates is greater
than the number of independent internal coordinates which is 3n—6. The possible
dependence of coordinates will be taken into account in what follows. Since
internal coordinates are being used the discussion will apply only to non-translating,
non-rotating atoms or molecules. The translation is no problem since it can always
be separated off. However the restriction to rotationless systemsisserious in as much
as only S states of atoms or X states of linear molecules can be treated. In principle
rotation could be handled by introducing fictitious particles as near neighbors of
others, say nuclei, and using a limiting process to generate angular coordinates.

It will be considered at first that all coordinates, including internuclear, are
variable. If one wishes to consider a molecule with the usual approximation of
fixed internuclear distances it is a simple matter to drop terms in this variable, or
what is equivalent, to arbitrarily let the corresponding nuclear masses become
infinite.

The Kinetic Energy Operator T

In general for a non-relativistic system in atomic units
1 1
=—v Z o Vi (1)

where the sum is over all particles and V;? is the Laplacian operator for particle 4.
When applied to a function of interparticle coordinates only, V; takes the form

V=D (Viry) 37 @
and i e
izzz (hj 37'1> + ZZ v" 1‘17' vl ”’“)m (3)

i
In equation (3) the quantity
2 2 2
s i)
(Viry) . Virg) = Srgrn Dig, ik (4)

where @, 41 is the angle at particle i between the radius vectors to particles jand k.
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Substituting (4) into (3) and (3) into (1) and removing from the double sum
in (3) the terms where § = k and therefore cos 19@,-, 37 = 1 there results

0
= _—Z Z <Mi m1> <672 Tu aTU) Z mq Z Z 008 Dy i 7> ory 3Tzk (5)

7, b#1
i<k

The Hamiltonian for a System with Coulomb Forces

The potential energy may be expressed as
V:Z Z Z@ Zj/?'ij
i <7
where Z; is the charge. Therefore the Hamiltonian is

1 o2 2 ¢ Zi 2y
#=y 3|~ ( ta)lm am) + 52~
_ Z - Z Z cos Vg, ik ™ arm (6)

7, k#1
i<k

This general formula was stated by KoLos and RooTHAAN [7a] who used it for
the particular case of the hydrogen molecule. Although. in this case of four particles
the six interparticle coordinates are independent (except in their ranges), equa-
tion () is true in general.

The special case for three particles, in particular the He atom, has long been
known and used [6, 12]. WALsH and Borowrrz [14] gave the general formula as it
applies to any atom with a fixed nucleus.

In the following the system will be restricted to any atom or molecule with
fixed nuclei.

The Hamiltonian for an Atom or Molecule with Fixed Nueclei

Equation (6) will apply to this case if m; for each nucleus is set to infinity
and my; for each electron is unity. Z; for a nucleus is its atomie number, for an
electron —1. Tt is convenient to distinguish between nuclei and electrons in the
indices. Let Greek indices, u and v, refer to nuclei and Latin indices, ¢, j and %,
refer to electrons unless otherwise sta’ced Then (6) can be rewritten as

n=33(- <—> e es-Grna)al

a2
o Zz: [/Zt<; oo ﬁi,u, W or 37'1 + ; ;z COSQ%W Y o o ory 87‘i] T
+ 7Z<; cos ﬁzj: ik L A ory or: kjl + Z Z Zﬂ v/T:w (7)
A simplified form of ( ) can be obtained by defining the following operators.
_ e 2 &
Let i :a—h_g + 7._l] arii
82
and C;, jr = cos Py, ik P ®

where one or two of the indices may represent the greek letters in (7). Then (7)

becomes
H=T-+V
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where
1
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In the expression for T there is an operator D,; for each nucleus-electron inter-
action and an operator Dy; for each electron-electron interaction. The triple sums,
or three-body interactions, in T include, for each electron, a C; ,, operator for
interaction with each possible pair of nuclei, a C; ,; operator for interaction with
each possible nucleus-other-electron pair, and a C;, ;5 operator for interaction of
electron ¢ with each possible pair of other electrons. For example, for the hydrogen
molecule there will be four D,; terms, one Dy term, two C; ,, terms, four C; ,;
terms and no C;, ;5 terms. For the lithium atom the various ‘oerms number three,
three, zero, six and three, respectively.

Because of the possible scaling of the wave function as related to the virial
theorem it is useful to keep T and V as separate sums. Of course the last sum in
the ¥ expression in (10) which is the internuclear repulsion is independent of the
variable coordinates and can be omitted from the Hamiltonian. The energy from
the Schrédinger equation would then be the ,,pure” electronic energy for the
system.

Specialization to Linear Combinations of Product Functions

Suppose that a general function, ¢, of interparticle coordinates can be ex-
pressed as a linear combination of product functions, i.e.,

9= s (1)
8
where
H (p(S) N (12)
i<

with @f}’ a function of ; alone and a nuclear index may be indicated. Nearly all
of the more accurate two and three particle functions are of this form [7,11, 8, 3,
6, 13].

In both the variation method and the least square local energy method there
is needed the expression for Hp which is of course a linear combination of the
Hy;’s. Because of the product form (12) the local energy expression will be parti-
cularly simple.

ZH(P/(P: ZcSH(pS/Z Cs Qs :ZCSES (F’S/Z Cs Qs (13)
5 s s s

where
= Hos/p; (14)
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Applying (9) to (12) and using (14) the result is
5 %
Z Z m(s)m - Z Z “(s)”
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where now again ¢, j and % refer only to electrons. The relative simplicity of this
equation is realized when it is noticed that each term in the first two sums is a
funetion of a single coordinate while in the triple sums each term is a function of
no more than three coordinates.

Specialization to Exponential-Power Funetions

Let ol = ry"" exp (— Lij i) (16)
with a possible nuclear index included as ¢ or §. The power ny; and the value of {y;
depend in some specifically defined manner upon the index s. Terms in the sum-
mations of equation (15) may be expressed with defined functions A{f) and B{f)

as follows
2{nis+ 1) mig(ng+1)
+

(s) _
Let Aijs - CZ o ¥ij 7’5‘ (17)
and B(s) Ly __7:_3 (18)
D ‘P(S)
then = = Ay (19)
(P'L]
C; (s) . (s) .
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¢U (pl
and finally
1
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In order to create matrix components for either the variation method or the
least square local energy method one needs the expression for He,. This is of
course just e;@s. The integrand g; Hes or the terms to be summed, exclusive of the
volume element, are then merely products of single coordinate functions for the
,,A7 and ¥V terms. For the ,,BB” terms two or three coordinates are intermingled.
It is expected that these formulas will be useful for a number of calculations.
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