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The use of interparticle coordinates in atomic and molecular calculations is reviewed and 
emphasized. For states where the wave function is dependent only upon interpartiele coordi- 
nates the I-]amiltonian is a relatively simple expression. If  the wave function is a linear com- 
bination of products of functions of single interpartiele coordinates of the exponential power 
form the formulas for local energy are particularly simple. 

Es wird fiber Teflchenabst~nde als Koordinaten in Atom- und i~Iolekiilproblemen referiert 
und auf ~hren Wert. hingewiesen. In Fallen, wo die Wellenfunktion nut yon Teflchenabstanden 
abhangt, wird tier Hamilton-Operator verhiiltnism~$ig einfaeh. Ist die Wellenfunktion eine 
Linearkombination yon Produkten yon Potenz-Exponential-Funktionen einzelner Teilchen- 
abstiinde, so werden die Ausdrficke fiir die 1okale Energie besonders einfach. 

L'auteur fair une revue et souligne 1'importance de l'emploi des distances relatives des 
];articules eomme coordonn6es pour les ealeuls atomiques et mol6eulaires. Pour des 6tats dont 
les fonctions d'onde ne d6pendent que de ces distances le l'Hamiltonien devient relative- 
merit siml~le. Si la fonction d'onde s'6crit eomme une eombinaison lin6aire de produits de 
fonetions exponentielles (~ puissances) ne d6pcndant que d'une seule coordonn6e interparticu- 
laire, les formules pour l'6nergie locale se simplifient particuli~rement. 

Introduction 

In te rpa r t i c l e  coordina tes  are the  magn i tudes  of  the  d is tances  be tween each 
pair  of  par t ic les  in an a tomic  or molecular  sys tem.  These include in te rnuc lear  
distances,  e lec t ron-nuclear  distances,  and  in tere lec t ronic  distances.  Such coordi- 
na tes  are na tu r a l  and  are a t t r ac t i ve  f rom a phys ica l  s t andpo in t  for a sys tem of  
several  part ic les .  F o r  two-e lec t ron  sys tems t h e y  have  been involved  in the  mos t  
accura te  calculat ions such as those  recen t ly  publ i shed  b y  KOLOS and  R o o T ~  

[Ta, b] for H 2 and  P~K~RIS [11] for He. 
To be sure, l inear  combina t ions  of in te rpar t i c le  coordinates ,  e l l ipt ical  and  

per imet r ic  coordinates ,  respect ively ,  were ac tua l ly  used in these calculat ions.  The 
a d v a n t a g e  of  such combina t ions  is to e l iminate  the  dependence  be tween the  ranges 
of  the  in te rpar t ic le  coordinates .  However ,  for more complex sys tems  such as the  
Li a t o m  or a t r i a tomic  molecule no s imilar  combina t ions  seem to be known.  

In t e rpa r t i e l e  coordinates  have  been used d i rec t ly  in energy calculat ions for 
sys tems of three  par t ic les  wi th  coulomb in te rac t ion  and  all in re la t ive  mot ion  [8, 3]. 

In te re lec t ron ic  dis tances  have  long been discussed as  an  a id  to  in t roduce  
e lect ron corre la t ion in wave  functions.  The  use of a corre la t ion fac tor  as in the  
m e t h o d  of cor re la ted  orbi ta ls  shows g rea t  promise  [7a, 6, 4, 2, 9]. In te re lee t ron ic  
d is tances  in the  wave  funct ion cause grave difficulties in eva lua t ing  the  in tegrals  
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needed in the variation method but progress is currently being made in such 
integrations [13, 10]. 

Although functions of interparticle coordinates are difficult to integrate it is a 
simple mat te r  to evaluate the local energy H~o/~o and to test  the accuracy of the 
wave function [1] or to use this device as a means of improving the function [5]. 

I t  is the purpose of this paper to discuss the Hamiltonian operator in inter- 
particle coordinates and to display the simplicity and generality of formulas for 
HyJ and HV/~p for a particular form of ~v. 

Coordinates 

Consider a system of n particles which may  include electrons or nuclei or other 
charged particles such as positrons or mesons which may  enter into atom or mole- 
cule formation. The total  number of interparticle coordinates is equal to the 
number of pairs of particles n (n--i) /2.  The coordinates will be designated riy, 
usually with i < j. Occasionally to gain simplicity of formulas i may  be greater than 
] but it  is only necessary to remember tha t  rty = ~]~ and either form may  be used. 

For more than  four particles the number of interpartiele coordihates is greater 
than  the number  of independent internal coordinates which is 3n--6.  The possible 
dependence of coordinates will be taken into account in what  follows. Since 
internal coordinates arc being used the discussion will apply only to non-translating, 
non-rotating atoms or molecules. The translation is no problem since it can always 
be separated off. However the restrictionto rotationless systems is serious in as much 
as only S states of atoms or X states of linear molecules can be treated. In principle 
rotation could be handled by  introducing fictitious particles as near neighbors of 
others, say nuclei, and using a limiting process to generate angular coordinates. 

I t  will be considered at  first tha t  all coordinates, including internuclear, are 
variable. I f  one wishes to consider a molecule with the usual approximation of 
fixed internuclear distances it is a simple mat ter  to drop terms in this variable, or 
what is equivalent, to arbitrarily let the corresponding nuclear masses become 
infinite. 

The Kinetic Energy Operator T 

In  general for a non-relativistic system in atomic units 

I ~ m-~.Vi2 (I) T~ 2 

where the sum is over all particles and V~ ~ is the Laplacian operator for particle i. 
When applied to a function of interparticle coordinates only, Vi takes the form 

v , - -  Iv,  ,jt /21 
and ~'r 

2 + (v,, (v, (3) 
J '~ i  J k 

In  equation (3) the quanti ty 
r fl  r 2 

(V~ rlt)- (Vt rl~) = 2 rij- rik = cos vqir , ~ (4) 

where #lj, ,k is the angle at  particle i between the radius vectors to particles ] a~d k. 



3 8  A~THVR A .  F ~ o s T :  

Substituting (4) into (3) and (3) into (1) and removing from the double sum 
in (3) the terms where ] ~ k and therefore cos zgij, # = I there results 

2 . . ~ -~- ~ - [ - -  - -  COSOi i ,  ik  D'~j Orik (5 )  
~r~l r~j �9 . . 

j < k  

The llamiltonian for a System with Coulomb Forces 

The potential energy may be expressed as 

v = ~  y z ,  z~/~,~ 
~ < ~  

where Z~ is the charge. Therefore the Itamiltonian is 

- y, ~ y, y, cos ~ ,  ,,~ ~,,, ~r,~ (~) 
i ~, kOi  

~ < k  

This general formula was stated by KOLOS and ROOTHXA~ [7a] who used it for 
the par~ieular case of the hydrogen molecule. Although in this case of four particles 
the six interpar~icle coordinates are independent (except in their ranges), equa- 
tion (6) is true in general. 

The special case for three particles, in particular the He atom, has long been 
known and used [6, 12]. W~-~s~ and BO~OWXTZ [14] gave the general formula as it 
applies to any atom with a fixed nucleus. 

In the following the system will be restricted to any atom or molecule with 
fixed nuclei. 

The Hamiltonian for an Atom or Molecule with Fixed Nuclei 

Equation (6) wilI apply to this case if m~ for each nucleus is set to infinity 
and m, for each electron is unity. Z~ for a nucleus is its atomic number, for an 
electron - - i .  I t  is convenient to distinguish between nuclei and electrons in the 
indices. Let  Greek indices, # and v, refer to nuclei and Latin indices, i, ] and k, 
refer to electrons unless otherwise stated. Then (6) can be rewritten as 

- -  ~ cos o~., ~ ~ + ~ ~: cosec.. ~j ~--%~ + 

+ 2 2  + z,,z./r,,. (7) 
j < k  

r  

A simplified form of (7) can be obtained by defining the following operators. 
~ 2 a 2 

Let D~j ~ ~ + - -  - -  ar~ re ~r~j 
02 (s) and Ci, It: ~ -  c o s  Oil ,  iIc ~r~,~ ~r~  

where one or two of the indices may represent the greek letters in (7). Then (7) 
becomes 

H = T + V  
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where 

and 

1 

�9 i < i  

�9 ~ j # i  j < k  
r  

(9) 

Z~ 1 Z,Z~ (t0) 

In the expression for T there is an operator D.i for each nucleus-electron inter- 
action and an operator Dly for each electron-electron interaction. The triple sums, 
or three-body interactions, in T include, for each electron, a G~, .~ operator for 
interaction with each possible pair of nuclei, a Ci, ~j operator for interaction with 
each possible nucleus-other-electron pair, and a G~, j~ operator for interaction of 
electron i with each possible pair of other electrons. For example, for the hydrogen 
molecuIe there will be four D~,i terms, one DiS term, two C;, r,~ terms, four Ci, .j 
terms and no Ci, j~ terms. For the lithium atom the various terms number three, 
three, zero, six and three, respectively. 

Because of the possible scaling of the wave function as related to the virial 
theorem it is useful to keep T and V as separate sums. Of course the last sum in 
the V expression in (10) which is the internuclear repulsion is independent of the 
variable coordinates and can be omitted from the I-Iamfltonian. The energy from 
the Schr5dinger equation would then be ~he ,,pure" electronic energy for the 
system. 

Specialization to Linear Combinations of Product Functions 

Suppose that  a general function, T, of interparticle coordinates can be ex- 
pressed as a linear combination of product functions, i.e., 

8 
where 

q)s ]7 - (s) = ~vij (12) 
i < j  

with q/~]) a function of rij alone and a nuclear index may be indicated. Nearly all 
of the more accurate two and three particle functions are of this form [7, 11, 8, 3, 
6, 13]. 

In both the variation method and the least squ~re local energy method there 
is needed the expression for H ?  which is of course a linear combination of the 
H9%'s. Because of the product form (12) the local energy expression will be parti- 
cularly simple. 

= = ( 1 3 )  
8 8 8 8 

w h e r e  

= 



4 0  A R T H U R  A .  F R O S T  : 

Applying (9) to (t2) and using (t4) the result is 

(s) _ (s) 
1 D~i W~i Dii 

, ~v (Fui 
. . v(y v~; ) + 

; ~ k  "'is ikWii ~_ik ] 
�9 c~) ( v  ~ + V (15) 

+ ~ ~ J 

where now again i, j and k refer only to  electrons. The relative simplicity of  this 
equat ion is realized whet~ it is noticed t h a t  each te rm in the first two sums is a 
funct ion of  a single coordinate while in the triple sums each term is a function of 
no more than  three coordinates. 

Specialization to Exponential-Power Functions 

Let  _(s) ~"'nil exp ( - -  ~'~/rij) (t6) 

with a possible nuclear index included as i or ]. The power nil and the value of  ~q 
depend ia some specifically defined mariner upon the index s. Terms in the sum- 

mations of  equat ion (15) m a y  be expressed with defined functions A(f)v and B(i7 ) 
as follows 

2 (nu + 1) ~,j + n~(n~ + 1) (t7) 
Let A,?) = ~,~ r,, ,,~ 

n .  (18) and B~)---- ~J - -  r~-~ 

D ( s )  

ii ~# A/?) (t9) then ~(i] ) - -  

.(s) (s) 
, Wij efik B ~  v B(i~ ) (20) and Ci i~ ~ ? )  ~{Z) - cos 0~, ~k- �9 

and finally 
1 

*, = - y E 2 ,,,A <: , -  2 2 A~"-- 
p i i < ]  

n(')  R<. ~ + y.  y .  cos o , , , , j .  _,,, - -  COS ~#i vi --yi  --m 
"7= j "  L ~ < v  ' ~iCi 

+ + v (21> 

# i  

In  order to create matr ix  components  for either the variat ion method  or the 
least square local energy method one needs the expression for tl~os. This is of  
course just  es9, .  The integrand ~t H~0, or the terms to be summed, exclusive of  the 
volume element, are then merely products  of  single coordinate functions for the  
, ,A" and V terms. For  the , , B B "  terms two or three coordinates are intermingled. 
I t  is expected tha t  these formulas Mll be useful for a number  of  calculations. 
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